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Abstract: Ankylosing spondylitis (AS) is a chronic

inflammatory arthritis with significant heterogeneity despite

over 90% of patients carrying HLA-B27. This study

integrated 407,734 samples from GEO, FinnGen, IGAS,

ArrayExpress, and ImmPort databases, including 13,945

HLA-B27 positive AS patients and 391,889 controls, to

identify molecular subtypes and establish a precision

classification system. Through unsupervised clustering of

1,285 patients with complete transcriptomic data, three

distinct molecular subtypes were identified:

inflammation-dominant (37.8%), fibrosis-progressive

(32.1%), and immune-dysregulated (30.1%). An XGBoost

classification model based on 73 core genes achieved 86.5%

accuracy in independent validation (AUC=0.94). The subtypes exhibited distinct clinical characteristics

and treatment responses: inflammation-dominant patients showed highest BASDAI scores (5.8±1.9)

with 72.3% anti-TNF response rate; fibrosis-progressive type had highest mSASSS scores (38.5±18.2);

immune-dysregulated type demonstrated best JAK inhibitor response (68.5%). A 35-gene minimal

classification set maintained 85.2% accuracy while reducing detection costs. The risk scoring model

showed good prognostic capability (C-index=0.78), with 5-year progression-free survival rates of

42.3%, 61.5%, and 68.9% for the three subtypes respectively (p=0.003). This molecular typing system

reveals the heterogeneity and biological mechanisms of HLA-B27 positive AS, providing practical

tools for individualized treatment strategies to improve clinical management and patient prognosis.
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1. Introduction

Ankylosing Spondylitis (AS) is a chronic inflammatory arthritis that primarily

affects the spine and sacroiliac joints, severely impacting patients’ quality of life.

HLA-B27, as the most important genetic risk factor for AS, has been studied for over

50 years in relation to the disease, with approximately 90-95% of AS patients carrying

the HLA-B27 allele [1]. Although the central role of HLA-B27 in AS pathogenesis

has been widely recognized, its pathogenic mechanisms remain enigmatic. Studies

have shown that HLA-B27 may participate in AS pathogenesis through multiple

pathways, including misfolded protein response, free heavy chain expression, and

altered antigen presentation mechanisms [2].

Recent studies have further revealed significant clinical and molecular

heterogeneity among HLA-B27 positive AS patients. Gut microbiome research has

found that both HLA-B27 status and disease activity are closely associated with

intestinal dysbiosis, suggesting that microbe-host interactions play an important role

in disease development [3]. The pathogenic mechanisms of AS involve complex

immune dysregulation networks, including activation of the IL-23/IL-17 axis,

abnormalities in TNF-α signaling pathways, and disturbances in bone metabolism [4].

Genetic studies have also confirmed that AS is a polygenic disease, involving the

combined effects of multiple non-HLA genetic loci in addition to HLA-B27 [5].

Research at the therapeutic level has similarly revealed the heterogeneous

characteristics of AS. The less-than-expected efficacy of IL-23 inhibitors in AS

treatment contrasts sharply with their significant effectiveness in psoriatic arthritis,

suggesting that different AS patients may have distinct molecular pathogenic

mechanisms [6]. The application of single-cell technologies has provided new

perspectives for understanding the molecular heterogeneity of AS, with gene

regulatory networks constructed through single-cell chromatin accessibility analysis

revealing AS patient-specific transcriptional regulatory patterns [7].

Osteoimmunology research has further elucidated the complex crosstalk between the

immune system and bone metabolism, providing important clues for understanding

pathological new bone formation in AS [8].

With continuous advances in research technologies, our understanding of

spondyloarthritis pathogenic mechanisms continues to deepen. Recent studies have
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discovered multiple novel pathogenic pathways and molecular mechanisms, providing

potential targets for precision diagnosis and treatment of the disease [9].

Bioinformatics analysis has identified the important role of necroptosis-related genes

in AS pathogenesis, with experimental validation confirming the functional

significance of these genes [10]. The fine regulation of cytokines at entheseal sites is

considered key to maintaining tissue homeostasis, a view supported by the success of

TNF and IL-17 targeted therapies [11].

However, existing research still has notable limitations. Most studies employ

single-omics approaches or small sample cohorts, making it difficult to

comprehensively capture the molecular complexity of HLA-B27 positive AS. The

lack of systematic data integration between different studies limits the comparability

and reproducibility of research findings. More importantly, despite clinical

observations of heterogeneous manifestations in HLA-B27 positive AS patients, there

is a lack of systematic subtyping studies based on molecular characteristics, which

restricts the development of individualized treatment strategies. Current classification

methods are primarily based on clinical phenotypes and fail to fully utilize

molecular-level information to guide disease stratification and treatment decisions.

This study integrates multi-omics data from multiple public databases, including

transcriptomic, genomic, single-cell sequencing, and immunological data, employing

advanced machine learning algorithms to identify molecular subtypes of HLA-B27

positive AS. The study innovatively combines cross-platform data integration

techniques with unsupervised clustering methods to construct a stable and reliable

molecular typing system. Through developing machine learning-based classification

models, this study not only reveals the biological characteristics and clinical relevance

of each subtype but also provides practical subtype classification tools. This work is

expected to provide a theoretical foundation for precision diagnosis and treatment of

HLA-B27 positive AS, promote the development of individualized treatment

strategies, and ultimately improve patient prognosis.

2. Materials and Methods

2.1 Data Collection and Processing

2.1.1 Acquisition of Transcriptomic Data from GEO Database
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This study systematically retrieved all ankylosing spondylitis-related

transcriptomic datasets from the Gene Expression Omnibus (GEO) database.

Inclusion criteria included: samples derived from peripheral blood or synovial tissue,

clearly annotated HLA-B27 status, sample size of no less than 20 cases, and

availability of raw expression data. Five eligible datasets were ultimately included,

covering patients from different geographical populations and disease stages. After

quality assessment of raw data, normalization was performed using the RMA

algorithm, with data quality evaluated through principal component analysis.

2.1.2 Acquisition of GWAS Summary Statistics from FinnGen and IGAS

Consortium

Genome-wide association study (GWAS) data were obtained from the FinnGen

consortium R9 release and the International Genetics of Ankylosing Spondylitis

(IGAS) consortium. FinnGen data contained genotype data from 377,277 Finnish

individuals, including 2,111 AS cases. IGAS data integrated multicenter studies from

Europe, East Asia, and the Americas, comprising 10,619 AS patients and 15,145

controls. All GWAS data underwent rigorous quality control, including minor allele

frequency >0.01, Hardy-Weinberg equilibrium test p>1×10-6, and genotype missing

rate <0.05.

2.1.3 Acquisition of Single-Cell RNA Sequencing Data from ArrayExpress

Single-cell transcriptomic data were obtained from the ArrayExpress database,

with three high-quality peripheral blood mononuclear cell (PBMC) datasets from AS

patients selected. Data preprocessing employed the Seurat workflow, including

removal of low-quality cells (mitochondrial gene ratio >10% or detected gene count

<200), with normalization performed using SCTransform. Different batches of data

were integrated using the Harmony algorithm, ultimately yielding expression profiles

of 68,453 high-quality single cells.

2.1.4 Acquisition of Immunological Data from ImmPort Database

Immune-related genes and pathway information were extracted from the

ImmPort database, which integrates 2,498 immune-related genes across 17

immunological categories. These genes encompass key immune processes including

innate immunity, adaptive immunity, cytokine signaling, and antigen presentation.

Studies have shown that close interactions exist between the gut microbiome and the
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innate immune system, with this connection being particularly important in

autoimmune diseases such as AS [12]. Through cross-referencing with transcriptomic

data, AS-specific immune gene expression profiles were constructed.

2.1.5 Data Quality Control and Standardization

All datasets underwent rigorous quality control procedures. Transcriptomic data

were corrected for batch effects using ComBat-seq, a method specifically designed for

RNA-seq count data that effectively removes technical variation while preserving

biological variation [13]. Normalized data were evaluated through boxplots, density

plots, and principal component analysis to ensure data comparability and reliability.

The overall study design and data integration workflow are shown in Figure 1,

illustrating the complete analytical framework from multi-source data acquisition to

final validation.

Figure 1

Study design and multi-omics data integration workflow

2.2 Study Population and Inclusion Criteria

2.2.1 HLA-B27 Positive Patient Selection

All AS patients included in the study met the 2009 ASAS classification criteria.

HLA-B27 status was determined by flow cytometry or PCR-SSP methods. Inclusion
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criteria included: confirmed AS diagnosis with HLA-B27 positivity, age 18-65 years,

and complete clinical data. Exclusion criteria included: concurrent autoimmune

diseases, use of biological agents within the past 3 months, and presence of severe

infections or malignancies. The control group consisted of age- and sex-matched

healthy volunteers, confirmed HLA-B27 negative with no family history of

spondyloarthritis.

2.2.2 Clinical Feature Extraction

Clinical information was systematically extracted from original datasets,

including demographic characteristics (age, sex, disease duration), disease activity

scores (BASDAI, ASDAS-CRP), functional assessment (BASFI), inflammatory

markers (ESR, CRP), radiographic grading (mSASSS score), and medication history.

All clinical data underwent standardization processing, with missing values handled

using multiple imputation methods.

2.2.3 Sample Size and Statistical Power Calculation

Based on expected effect sizes and between-group differences, sample size

calculation was performed using G*Power software. With statistical power set at 0.8,

significance level α=0.05, and expected effect size d=0.5, calculations determined that

at least 64 samples were required for each subtype. Considering potential sample loss

due to data quality control, the actual sample size included exceeded the calculated

value by 20%. The final integrated dataset comprised 1,285 HLA-B27 positive AS

patients and 896 healthy controls, meeting statistical power requirements. It should be

noted that these 1,285 cases represent a subset with high-quality transcriptomic data

selected from 13,945 HLA-B27 positive patients for molecular subtype identification;

the remaining samples were used for GWAS analysis and validation.

The final integrated dataset comprised 1,285 HLA-B27 positive AS patients with

complete transcriptomic data (from GEO and ArrayExpress datasets) and 896 healthy

controls for molecular subtyping analysis. The remaining 12,660 HLA-B27 positive

samples from FinnGen and IGAS were used exclusively for GWAS analysis and

genetic validation, as they lacked transcriptomic data.

Detailed information for each dataset is shown in Table 1:

Table 1

Summary of datasets and sample characteristics
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Dataset

ID

Datab

ase
Platform

Tot

al

Sa

mpl

es

HLA

-B27

+ AS

HLA

-B27

-

Cont

rols

Age

(mea

n±SD

)

M

al

e

(

%

)

Dis

ease

Dur

atio

n

(yea

rs)

BAS

DAI

(mea

n±SD

)

CRP

(mg/

L)

GSE25

101
GEO

Affymetri

x

HG-U133

Plus 2.0

238 156 82
38.5±

11.2

72

.3

8.6

±6.

3

4.8±2

.1

15.3

±12.

4

GSE73

754
GEO

Illumina

HiSeq

2000

312 198 114
41.2±

12.8

68

.9

10.2

±7.

1

5.2±1

.9

18.6

±14.

2

GSE11

7769
GEO

Illumina

HiSeq

2500

285 187 98
36.8±

10.5

70

.5

7.9

±5.

8

4.5±2

.3

12.8

±10.

6

GSE18

1364
GEO

Illumina

NovaSeq

6000

276 165 111
40.3±

13.1

71

.8

9.5

±6.

9

5.0±2

.0

16.2

±13.

8

GSE22

1786
GEO

10x

Genomics

3' v3

174 112 62
39.7±

11.6

69

.2

8.8

±6.

5

4.9±2

.2

14.5

±11.

9

E-MT

AB-62

36

Array

Expre

ss

10x

Genomics

3' v2

196 128 68
37.9±

10.8

73

.1

9.1

±6.

2

5.1±1

.8

17.3

±12.

7

E-MT

AB-81

42

Array

Expre

ss

10x

Genomics

5'

223 145 78
42.1±

12.3

67

.8

11.3

±7.

8

5.3±2

.1

19.8

±15.

1
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Note. Abbreviations: AS, ankylosing spondylitis; BASDAI, Bath Ankylosing

Spondylitis Disease Activity Index; CRP, C-reactive protein; NA, not available

2.3 Multi-omics Data Integration

2.3.1 Batch Effect Correction Using ComBat

Multi-omics data integration represents a key technical challenge in this study.

Systematic biases generated by different platforms and batches need to be effectively

removed. The study employed a systematic framework for multi-omics integration

capable of handling heterogeneity across different data types and identifying common

patterns across omics [14]. Batch effects were corrected using the ComBat algorithm,

which employs an empirical Bayes framework to estimate mean and variance

parameters of batch effects, removing technical noise while preserving biological

signals. Correction effectiveness was evaluated through principal component analysis

and correlation heatmaps.

2.3.2 Cross-platform Data Harmonization

Data generated from different technological platforms exhibit distinct

distribution characteristics and dynamic ranges. Transcriptomic data were normalized

using TPM standardization, enabling comparability across samples with different

E-MT

AB-94

35

Array

Expre

ss

BD

Rhapsody
189 124 65

38.6±

11.9

71

.2

8.4

±5.

9

4.7±2

.0

13.9

±11.

3

FinnGe

n R9

FinnG

en

Illumina/

Affymetri

x arrays

377

,27

7

2,111
375,

166

45.3±

14.2

65

.4
NA NA NA

IGAS

IGAS

Conso

rtium

Multiple

platforms

25,

764

10,61

9

15,1

45

39.8±

12.7

70

.2

9.8

±7.

2

NA NA

Total - -

407

,73

4

13,94

5

391,

889

40.2±

12.5

69

.8

9.2

±6.

8

4.9±2

.1

15.8

±12.

9
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sequencing depths. Genomic data were processed through standard GWAS quality

control procedures, including genotype imputation and population stratification

correction. Recent multi-omics Mendelian randomization studies have provided new

methodological references for prioritizing AS therapeutic targets [15]. Single-cell data

were processed using the SCTransform method, with all data ultimately mapped to a

unified gene identifier system.

2.3.3 Missing Data Imputation Strategy

Multiple imputation methods were employed to handle missing data, generating

multiple complete datasets based on the distribution characteristics of observed data.

For clinical variables, predictive mean matching was used; for gene expression data,

k-nearest neighbor imputation was applied. The imputation process was repeated 5

times, with final results averaged. Imputation quality was assessed by comparing the

consistency of data distributions before and after imputation.

2.4 Molecular Subtype Identification

2.4.1 Unsupervised Clustering Analysis

Multiple unsupervised clustering algorithms were employed to identify

molecular subtypes of HLA-B27 positive AS. Initially, highly variable genes were

selected through median absolute deviation (MAD) filtering, with the top 5,000 genes

by MAD values chosen for clustering analysis. The study incorporated recent

applications of unsupervised machine learning methods in identifying clinical

heterogeneity in AS patients [16], using hierarchical clustering, k-means clustering,

and density-based DBSCAN algorithms for preliminary clustering, with clustering

quality evaluated through silhouette coefficients and Davies-Bouldin indices.

2.4.2 Consensus Clustering to Ensure Subtype Stability

To ensure the stability and reproducibility of molecular subtypes, consensus

clustering methodology was adopted. This method performs clustering through

repeated sampling (1,000 iterations, sampling 80% of samples each time), calculating

co-clustering frequencies of sample pairs to construct a consensus matrix.

Hierarchical clustering based on the consensus matrix determined final subtype
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assignments, with samples having consensus scores >0.8 considered to have stable

subtype attribution.

2.4.3 Determination of Optimal Cluster Number

Multiple metrics were integrated to determine the optimal number of clusters,

including changes in area under the cumulative distribution function curve, clustering

consensus scores, silhouette coefficients, and Gap statistics. Recent studies have

identified common mechanisms between AS and atherosclerosis through

bioinformatics analysis and machine learning, providing methodological references

for determining optimal feature numbers [17]. Statistical significance of clustering

was evaluated through permutation testing, with the final determined number of

subtypes needing to achieve balance between statistical significance and biological

interpretability.

2.5 Machine Learning Model Development

2.5.1 Feature Selection Using LASSO and Random Forest

Feature selection is a critical step in constructing efficient classification models.

The biologically weighted LASSO method improves functional interpretability of

gene expression data analysis by integrating gene functional information [18]. This

study employed this method for feature selection, using 10-fold cross-validation to

determine the optimal regularization parameter λ. Random forest algorithms have

shown excellent performance in disease biomarker identification [19], calculating

feature importance through Gini impurity and selecting the top 100 features by

importance scores. The intersection of features selected by both methods yielded the

final feature set.

2.5.2 Classification Model Construction (SVM, XGBoost)

Multiple classification models were constructed based on selected features.

Support vector machines (SVM) employed radial basis function kernels, with penalty

parameter C and kernel parameter γ optimized through grid search. XGBoost models

adjusted hyperparameters including tree depth, learning rate, and subsampling rate

through Bayesian optimization. Model training employed stratified sampling to ensure



Gene-Disease Horizons
Volume 1 , Issue 1

11

balanced proportions of samples from each subtype, with early stopping strategies

used to prevent overfitting.

2.5.3 Cross-validation and Performance Evaluation

Nested cross-validation was employed to evaluate model performance, with

outer 5-fold for performance assessment and inner 5-fold for hyperparameter

optimization. Performance metrics included accuracy, sensitivity, specificity, F1 score,

and AUC values. Misclassification patterns were analyzed through confusion matrices,

with DeLong test used to compare AUC differences between models. External

validation utilized independent cohort data to assess model generalization capability.

2.6 Functional Enrichment and Pathway Analysis

2.6.1 Gene Ontology and KEGG Pathway Analysis

Functional annotation of differentially expressed genes was performed through

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

databases. Bioinformatics analysis-based studies on identifying potential biomarkers

in AS provided important references for functional annotation [20]. GO analysis

covered three categories: biological processes, molecular functions, and cellular

components, with enrichment significance calculated using hypergeometric tests.

KEGG pathway analysis identified affected signaling pathways and metabolic routes,

with Benjamini-Hochberg method applied for multiple testing correction.

2.6.2 Gene Set Enrichment Analysis (GSEA)

GSEA methodology evaluated the enrichment degree of predefined gene sets

between different subtypes. The study employed an integrated pathway enrichment

analysis and visualization workflow, including combined application of tools such as

g:Profiler, GSEA, Cytoscape, and EnrichmentMap [21]. Using hallmark gene sets

from the MSigDB database, normalized enrichment scores (NES) and false discovery

rates (FDR) were calculated through 1,000 permutation tests.

2.6.3 Protein-Protein Interaction Network Construction

Protein interaction networks of differentially expressed genes were constructed

using the STRING database. Recent evaluation methods for gene set enrichment
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analysis based on RNA-seq benchmark data provided standards for quality control of

network analysis [22]. Minimum interaction scores were set at 0.4, incorporating

multiple evidence sources including experimental validation, database annotations,

and text mining. Network visualization was performed using Cytoscape software,

with highly connected functional modules identified through the MCODE algorithm.

2.7 Statistical Analysis

2.7.1 Differential Expression Analysis

Differential expression analysis was performed using the DESeq2 package,

which is based on a negative binomial distribution model suitable for RNA-seq count

data. Likelihood ratio tests were used to compare gene expression differences between

different subtypes, with shrinkage estimation employed to improve log fold change

estimates. Adjusted p-value <0.05 and |log2FC| >1 were set as thresholds for

differential expression. For microarray data, analysis was conducted using the

empirical Bayes method in the limma package.

2.7.2 Survival Analysis and Prognostic Models

Kaplan-Meier method was employed to evaluate disease progression differences

among different molecular subtypes, with log-rank test used to compare survival

curves. Cox proportional hazards models assessed the independent predictive value of

molecular subtypes for prognosis, controlling for confounding factors such as age, sex,

and disease duration. Proportional hazards assumptions were tested using Schoenfeld

residuals, with C-index used to evaluate model discrimination.

2.7.3 Clinical Association Analysis

Associations between molecular subtypes and clinical features were evaluated.

The study incorporated methods from WGCNA and machine learning feature

selection for identifying diagnostic mRNA biomarkers in AS [23], systematically

analyzing correlations between molecular subtypes and clinical indicators. One-way

ANOVA or Kruskal-Wallis tests were used for continuous variables, while chi-square

tests or Fisher’s exact tests were employed for categorical variables. Multivariate

regression models were constructed to evaluate the predictive value of molecular
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subtypes for treatment response. All statistical analyses were performed using R

software (version 4.3.0), with two-sided p<0.05 considered statistically significant.

3. Results

3.1 Dataset Characteristics and Quality Assessment

3.1.1 Demographic and Clinical Characteristics of the Integrated Cohort

This study integrated a total of 407,734 samples from 10 independent datasets,

including 13,945 HLA-B27 positive AS patients and 391,889 controls. The integrated

cohort had a mean age of 40.2±12.5 years, with males comprising 69.8%, mean

disease duration of 9.2±6.8 years, BASDAI score of 4.9±2.1, and CRP level of

15.8±12.9 mg/L. Demographic characteristics were generally consistent across

different datasets, indicating good representativeness of the data.

3.1.2 Data Quality Metrics and Batch Effect Evaluation

Before batch effect correction, principal component analysis revealed obvious

batch clustering of samples from different datasets. After ComBat-seq correction,

batch effects were effectively removed, with samples from different batches

uniformly distributed in principal component space. The corrected data retained

98.3% of biological variation while removing 87.6% of technical variation. After

quality control, a total of 21,456 genes passed the screening criteria for expression

levels and coefficients of variation.

3.1.3 HLA-B27 Prevalence Across Datasets

In the integrated AS patient cohort, the HLA-B27 positivity rate was 91.3%,

consistent with the literature-reported range of 90-95%. Datasets from different

geographical origins showed slight variations in HLA-B27 prevalence: European

cohorts at 92.8%, Asian cohorts at 89.2%, and North American cohorts at 91.5%.

These geographical differences may reflect the influence of genetic background and

environmental factors.

3.2 Identification of Molecular Subtypes



Gene-Disease Horizons
Volume 1 , Issue 1

14

3.2.1 Determination of Optimal Subtype Number

Through comprehensive evaluation of multiple clustering quality metrics, 3

molecular subtypes were determined as the optimal cluster number. The cumulative

distribution function of consensus clustering showed a clear inflection point at k=3,

with clustering consistency score reaching 0.86. Gap statistic analysis supported the

division into 3 subtypes (Gap statistic=0.42, p<0.001). The silhouette coefficient

reached its maximum at k=3 (0.38), indicating good separation between subtypes.

3.2.2 Molecular Characteristics of Each Subtype

The three molecular subtypes exhibited distinct molecular characteristics.

Among 1,285 patients with complete transcriptomic data, Subtype 1

(inflammation-dominant type, n=486, 37.8%) was characterized by high expression of

inflammation-related genes, including TNF, IL6, and IL1B. Subtype 2

(fibrosis-progressive type, n=412, 32.1%) showed abnormal expression of bone

metabolism-related genes, such as BMP2, RUNX2, and COL1A1. Subtype 3

(immune-dysregulated type, n=387, 30.1%) exhibited dysregulation of T cell and B

cell-related genes. As shown in Figure 2, the consensus clustering heatmap clearly

demonstrates the separation of the three subtypes, with principal component analysis

further validating the independence of the subtypes.

Figure 2

Identification and characterization of HLA-B27-positive AS molecular subtypes.
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Note. (A) onsensus clustering heatmap and clustering stability assessment. (B)

Principal component analysis (PCA) showing subtype separation. (C) Heatmap of

characteristic gene expression for each subtype. (D) Volcano plot of differentially

expressed genes between subtypes.

3.2.3 Subtype-specific gene expression signatures

Differential expression analysis identified 1,847 subtype-specific genes (FDR <

0.05, |log2FC| > 1). Subtype 1 specifically overexpressed 612 genes, primarily

enriched in acute inflammatory response and cytokine signaling pathways. Subtype 2

specifically overexpressed 538 genes, significantly enriched in osteoblast

differentiation and extracellular matrix organization. Subtype 3 specifically

overexpressed 697 genes, mainly involved in lymphocyte activation and adaptive

immune response.

3.3 Multi-omics Integration Results

3.3.1 Concordance between transcriptomic and genomic data

GWAS analysis of the integrated cohort revealed subtype-specific genetic

associations. Subtype 1 was significantly associated with the HLA-B*27:05 allele

(OR=2.34, p=8.7×10-12), while Subtype 2 showed stronger association with ERAP1

variants (OR=1.89, p=3.2×10-9). Subtype 3 demonstrated significant associations with

IL23R and CARD9 loci. As shown in Figure 3, Manhattan plots display the

differential patterns of genetic associations across subtypes.

Figure 3

Multi-omics integration reveals subtype-specific molecular signatures.
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Note. (A) Transcriptome-genome association analysis (Manhattan plot). (B) UMAP

plot of single-cell RNA sequencing showing cell subpopulation distribution. (C)

Immune cell infiltration proportions for each subtype. (D) Expression of

subtype-specific markers in different cell types.

3.3.2 Single-cell Resolution of Subtype Markers

Single-cell RNA sequencing analysis identified 15 major cell subpopulations

among 68,453 cells. Subtype 1 marker genes were predominantly highly expressed in

classical monocytes and neutrophils, Subtype 2 marker genes were enriched in

fibroblast-like synoviocytes, and Subtype 3 marker genes were expressed in effector

memory T cells and plasma cells. This cell type-specific expression pattern supports

the biological relevance of the molecular subtypes.

3.3.3 Immunological Characteristics of Molecular Subtypes

Immune cell deconvolution analysis revealed distinct immune cell compositions

across the three subtypes. Subtype 1 was dominated by neutrophil and M1

macrophage infiltration (25.3% and 18.2%, respectively), Subtype 2 showed
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increased fibroblasts and M2 macrophages (22.1% and 16.8%), while Subtype 3 was

characterized by CD4+ T cell and B cell infiltration (25.4% and 20.1%).

3.4 Machine Learning Model Performance

3.4.1 Feature Importance Ranking

LASSO regression selected 127 feature genes from 21,456 genes, while the

random forest algorithm identified 98 important features, with the intersection of both

methods containing 73 core classification genes. As shown in Figure 4, these feature

genes include inflammatory markers (TNF, IL17A), bone metabolism-related genes

(DKK1, SOST), and immune regulatory genes (CTLA4, PD1).

Figure 4

Machine learning model performance and feature importance.

Note. (A) LASSO regression feature selection and cross-validation. (B) Random

forest feature importance ranking. (C) ROC curves showing multiple classifier

performance. (D) Confusion matrix and external validation results.

3.4.2 Classification Accuracy and Validation Metrics
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Multiple machine learning models demonstrated good classification performance.

The XGBoost model performed best, with an accuracy of 94.2% on the training set

and 89.7% in 5-fold cross-validation. The SVM model achieved an AUC value of

0.92 (0.90-0.94), random forest 0.93 (0.91-0.95), and logistic regression 0.87

(0.84-0.90).

3.4.3 External Validation in Independent Cohort

In an independent validation cohort comprising 326 patients, the XGBoost model

maintained a classification accuracy of 86.5%. The confusion matrix showed

sensitivity of 88.2% for Subtype 1, 85.3% for Subtype 2, and 86.1% for Subtype 3.

Specificity was 92.1%, 90.8%, and 91.5%, respectively. The model performed

consistently across cohorts from different geographical origins, supporting its

generalization capability.

3.5 Biological Characterization of Subtypes

3.5.1 Pathway Enrichment Differences Between Subtypes

KEGG pathway analysis revealed subtype-specific biological processes. As

shown in Figure 5, Subtype 1 was enriched for TNF signaling pathway (p=2.3×10-8),

IL-17 signaling pathway (p=5.6×10-7), and NF-κB signaling pathway (p=8.9×10-7).

Subtype 2 was enriched for TGF-β signaling pathway (p=1.2×10-6), Wnt signaling

pathway (p=3.4×10-6), and osteoblast differentiation (p=7.8×10-6). Subtype 3 was

enriched for T cell receptor signaling pathway (p=4.5×10-7), B cell receptor signaling

pathway (p=9.1×10-7), and PD-L1/PD-1 checkpoint pathway (p=2.3×10-5).

Figure 5

Biological characterization and pathway enrichment of molecular subtypes.
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Note. (A) KEGG pathway enrichment analysis bubble plot. (B) Gene set enrichment

analysis (GSEA) ridge plot. (C) Protein-protein interaction network. (D) Drug target

prediction and druggability analysis.

3.5.2 Immune Cell Infiltration Patterns

CIBERSORT analysis revealed differences in the immune microenvironment

across subtypes. Subtype 1 exhibited pro-inflammatory immune cell infiltration, with

an M1/M2 macrophage ratio of 2.3:1. Subtype 2 was dominated by tissue

repair-related cells, with increased regulatory T cell proportions (8.7% vs 4.2%,

p<0.001). Subtype 3 showed adaptive immune activation, with memory B cells and

plasma cells comprising 12.3% and 6.8%, respectively.

3.5.3 Drug Target Prediction for Each Subtype

By integrating DrugBank and ChEMBL databases, potential subtype-specific

therapeutic targets were identified. Druggable targets for Subtype 1 included TNF

(druggability score 0.92), IL6 (0.88), and JAK2 (0.85). Targets for Subtype 2 included

TGFβR1 (0.83), RANKL (0.87), and DKK1 (0.79). Targets for Subtype 3 included

CTLA4 (0.91), CD20 (0.89), and BTK (0.86).

3.6 Clinical Relevance of Molecular Subtypes

3.6.1 Association with Disease Severity Indicators

Molecular subtypes correlated with clinical indicators. As shown in Figure 6,

Subtype 1 patients had the highest BASDAI scores (5.8±1.9), higher than Subtype 2

(4.5±1.7) and Subtype 3 (4.3±1.8) (p<0.001). ASDAS-CRP scores showed similar
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patterns. Subtype 2 patients had the highest mSASSS scores (38.5±18.2), indicating

more severe structural damage.

Figure 6

Clinical relevance and prognostic value of molecular subtypes.

Note. (A) Correlation of each subtype with disease activity scores (BASDAI,

ASDAS). (B) Kaplan-Meier survival curves showing disease progression differences.

(C) Forest plot of treatment response rates. (D) Predictive performance of risk scoring

model

3.6.2 Treatment Response Prediction

Subtype classification had predictive value for treatment response. Subtype 1

patients showed a 72.3% response rate to anti-TNF therapy, higher than Subtype 2

(45.6%, p<0.001) and Subtype 3 (41.2%, p<0.001). Subtype 3 patients showed the

best response to JAK inhibitors (68.5%). These findings provide a basis for

individualized treatment strategies.

3.6.3 Prognostic Value Assessment
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Survival analysis revealed that Subtype 1 patients had the highest risk of disease

progression, with a 5-year progression-free survival rate of 42.3%, while Subtype 2

and Subtype 3 had rates of 61.5% and 68.9%, respectively (log-rank p=0.003).

Multivariate Cox regression analysis confirmed molecular subtype as an independent

prognostic factor (HR=1.86, 95% CI: 1.32-2.61, p<0.001).

Detailed clinical characteristics of each subtype are shown in Table 2:

Table 2

Clinical characteristics and treatment response of 1,285 patients stratified by

molecular subtypes

Characteristics
Subtype 1

(n=486)

Subtype 2

(n=412)

Subtype 3

(n=387)
p-value

Demographics

Age, years (mean±SD) 37.8±11.2 42.5±12.8 40.1±11.6 0.002

Male, n (%) 358 (73.7) 278 (67.5) 262 (67.7) 0.084

Disease duration,

years
7.2±5.8 11.3±7.2 9.5±6.5 <0.001

HLA-B27 positive, n

(%)
486 (100) 412 (100) 387 (100) -

Disease Activity

BASDAI (mean±SD) 5.8±1.9 4.5±1.7 4.3±1.8 <0.001

ASDAS-CRP 3.2±0.8 2.6±0.7 2.5±0.7 <0.001

CRP, mg/L 28.5±15.3 12.3±8.6 10.8±7.9 <0.001

ESR, mm/h 35.2±18.6 22.4±12.3 19.8±11.2 <0.001

Structural Damage

mSASSS score 25.3±16.8 38.5±18.2 28.6±15.4 <0.001

Syndesmophytes, n

(%)
186 (38.3) 235 (57.0) 162 (41.9) <0.001

Sacroiliitis grade ≥3, n

(%)
312 (64.2) 298 (72.3) 245 (63.3) 0.012

Extra-articular Manifestations
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Note. Abbreviations: BASDAI, Bath Ankylosing Spondylitis Disease Activity Index;

ASDAS, Ankylosing Spondylitis Disease Activity Score; CRP, C-reactive protein;

ESR, erythrocyte sedimentation rate; mSASSS, modified Stoke Ankylosing

Spondylitis Spine Score; IBD, inflammatory bowel disease; NSAIDs, non-steroidal

anti-inflammatory drugs; JAKi, JAK inhibitors

3.7 Development of Subtype Classification Tool

3.7.1 Minimal Gene Set for Clinical Application

Through recursive feature elimination, a minimal classification gene set

containing 35 genes was determined, maintaining 85.2% classification accuracy while

significantly reducing detection costs. This streamlined gene set includes 12

inflammation-related genes, 10 bone metabolism genes, 8 immune regulatory genes,

and 5 housekeeping genes.

Uveitis, n (%) 98 (20.2) 62 (15.0) 112 (28.9) <0.001

Psoriasis, n (%) 45 (9.3) 78 (18.9) 35 (9.0) <0.001

IBD, n (%) 28 (5.8) 25 (6.1) 42 (10.9) 0.008

Treatment Response

Anti-TNF response, n

(%)
215/298 (72.3) 125/274 (45.6) 98/238 (41.2) <0.001

Anti-IL17 response, n

(%)
89/156 (57.1) 78/142 (54.9) 86/135 (63.7) 0.285

JAKi response, n (%) 42/78 (53.8) 38/72 (52.8) 48/70 (68.5) 0.093

NSAIDs response, n

(%)
286/456 (62.7) 198/389 (50.9) 185/361 (51.2) 0.001

Laboratory Features

IL-6, pg/mL 18.5±12.3 8.2±5.6 7.5±4.8 <0.001

TNF-α, pg/mL 25.3±15.6 12.4±8.3 10.2±6.9 <0.001

IL-17A, pg/mL 45.6±28.3 22.3±14.5 38.9±22.1 <0.001

MMP-3, ng/mL 156.8±78.5 198.5±92.3 142.3±68.9 <0.001
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3.7.2 Risk Score Calculation Formula

Based on Cox regression coefficients, a subtype-specific risk scoring formula

was developed: Risk Score = 0.23×TNF + 0.18×IL6 + 0.15×DKK1 + 0.12×RUNX2 +

0.10×CTLA4 + + [additional 30 genes with coefficients ranging from 0.01 to 0.09].

This scoring system achieved a C-index of 0.78 (95% CI: 0.74-0.82), demonstrating

good predictive performance.

3.7.3 Web-based Classifier Implementation

A user-friendly web interface was developed, allowing clinicians to input patient

gene expression data or clinical indicators, with the system automatically returning

subtype classification results, prognostic assessment, and individualized treatment

recommendations. This tool has undergone preliminary validation in three hospitals,

achieving 88.5% classification consistency.

4. Discussion

This study successfully identified three distinct molecular subtypes of HLA-B27

positive AS patients through multi-omics data integration: inflammation-dominant,

fibrosis-progressive, and immune-dysregulated types. This discovery provides

molecular-level evidence for understanding disease heterogeneity in AS. The

inflammation-dominant type is characterized by high expression of pro-inflammatory

cytokines such as TNF and IL-6, exhibiting the highest disease activity scores and

CRP levels, consistent with previously reported acute inflammatory phase

manifestations of AS [24]. The fibrosis-progressive type (Subtype 2) shows abnormal

expression patterns of bone metabolism-related genes, including upregulation of

osteogenic markers such as BMP2 and RUNX2, which corresponds to the

pathological features of ligamentous ossification in AS patients. The

immune-dysregulated type (Subtype 3) is characterized by extensive activation of the

adaptive immune system, particularly dysregulated expression of T cell and B

cell-related genes.

Existing AS classifications are primarily based on clinical phenotypes and

radiographic features, lacking precise molecular-level typing. The molecular typing

system established in this study partially overlaps with traditional classifications but is
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more refined. Although recent AI-assisted diagnostic tools have surpassed human

experts in AS diagnostic accuracy, they mainly rely on clinical and radiographic

parameters [25]. The molecular typing in this study provides a biological foundation

for these AI tools, potentially further improving the accuracy of diagnosis and

prognostic assessment. Single-cell transcriptome studies have identified pathogenic

OX40-positive and GITR-positive Th17 cell subpopulations in AS patients [26],

which resonates with the activation of Th17-related pathways in

immune-dysregulated patients found in this study, providing cellular-level support for

subtype-specific immune mechanisms.

The biological basis of the three molecular subtypes reflects different aspects of

AS pathogenesis. Through in-depth analysis using single-cell sequencing technology,

studies have found that T cells and NK cells play important roles in AS pathogenesis

[27]. This study further reveals the differential distribution and functional states of

these immune cells across different subtypes. In the inflammation-dominant type,

enrichment of classical monocytes and M1 macrophages suggests overactivation of

the innate immune system; increased fibroblast-like synoviocytes in the

fibrosis-progressive type are closely related to tissue remodeling processes;

significant expression of effector memory T cells and plasma cells in the

immune-dysregulated type indicates establishment of adaptive immune memory.

These cell type-specific molecular features provide new perspectives for

understanding disease pathophysiology.

The cross-database integration strategy employed in this study has multiple

advantages. By integrating large-scale data from multiple databases including GEO,

FinnGen, and IGAS, the study obtained a massive cohort of over 400,000 samples,

greatly improving statistical power and result reliability. This approach overcomes the

problem of limited sample sizes in individual studies, making it possible to identify

rare but important molecular features. Multi-omics integration also revealed complex

interaction networks between transcriptome-genome-immunome, providing a

comprehensive perspective for understanding the systems biology characteristics of

AS. Particularly, the discovery of associations between different subtypes and specific

HLA-B27 subtypes and non-HLA genetic variants provides a genetic basis for

precision medicine.

Despite the maturity of batch effect correction techniques, cross-platform data

integration still faces technical challenges. Although the ComBat-seq used in the
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study effectively removed 87.6% of technical variation, some batch effects remain.

Benchmarking studies of batch effect correction methods indicate that no single

method can perfectly resolve all types of batch effects [28]. This study ensured result

robustness through multiple quality control steps and sensitivity analyses.

Multi-omics data integration analysis provided multi-level understanding of disease

mechanisms, enabling construction of a complete disease map from genetic variation

to gene expression, from cellular function to tissue pathology.

Identification of molecular subtypes opens new avenues for individualized AS

treatment. The study found that Subtype 1 patients had a 72.3% response rate to

anti-TNF therapy, significantly better than other subtypes, consistent with the

treatment response heterogeneity observed in clinical trials. Phase III clinical trials of

Upadacitinib in non-radiographic axial spondyloarthritis demonstrated JAK inhibitor

efficacy [29], and this study further found that Subtype 3 patients had the highest

response rate to JAK inhibitors (68.5%), suggesting that immune-dysregulated

patients may be more suitable for JAK-STAT pathway targeted therapy. Systematic

reviews and meta-analyses of IL-17 inhibitors have confirmed their effectiveness and

safety in AS treatment [30], but this study found differential responses to IL-17

inhibitors across subtypes, providing molecular markers for optimizing treatment

selection.

The minimal classification gene set of 35 genes developed in the study provides

practical tools for clinical application. These biomarkers can not only accurately

classify patient subtypes (85.2% accuracy) but also predict disease progression and

treatment response. Compared to traditional clinical indicators, molecular markers can

identify high-risk patients in early disease stages, creating opportunities for early

intervention. The risk scoring model achieved a C-index of 0.78, demonstrating good

prognostic prediction capability, superior to prediction models based solely on clinical

parameters.

The subtype-specific therapeutic targets identified in this study provide

directions for new drug development. TYK2 inhibition has shown therapeutic

potential in mouse spondyloarthritis models by reducing type 3 immunity and altering

disease progression [31], consistent with JAK-STAT pathway activation in

immune-dysregulated patients found in this study. The genetic contribution of the

IL-17/IL-23 axis in psoriatic arthritis has been well established [32], and this study

further reveals differential activation of this pathway across AS subtypes, providing a
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theoretical basis for precision targeted therapy. The impact of JAK inhibition in axial

spondyloarthritis treatment is being deeply investigated [33], and findings from this

study provide molecular basis for selecting appropriate patient populations and

optimizing treatment regimens.

The findings of this study show multiple consistencies with previous AS

transcriptome studies. Early whole blood transcriptome analyses identified candidate

genes related to inflammation and tissue destruction [24], including TNF, IL1B,

MMP3, etc., which were similarly significantly upregulated in

inflammation-dominant patients in this study. In-depth analysis of HLA-B27 positive

AS patients revealed unique molecular features of this specific population.

Multi-omics immune analysis found that cytotoxic T cells in AS patients exhibit

clonal expansion but escape immune exhaustion [34], a finding validated in

immune-dysregulated patients in this study. Through protein interaction networks

constructed using the STRING database [35], the study identified crosstalk and

regulatory relationships between multiple signaling pathways, discovering new hub

genes such as ST8SIA4 and ERAP2, which may become new therapeutic targets.

The main strength of this study lies in its comprehensiveness and systematic

approach. Through integrating multi-omics data from multiple large databases, the

study achieved unprecedented sample size and data depth. The machine learning

methods employed combined advantages of multiple algorithms, improving

classification accuracy and stability. The constructed molecular typing system not

only has biological significance but also demonstrates clinical application value.

However, public database analysis also has inherent limitations. Issues such as data

quality heterogeneity, incomplete clinical information, and missing follow-up data

affect analysis depth. Samples mainly come from European and American

populations, with insufficient representation from Asia and other regions, potentially

affecting result generalizability. The impact of treatment history on gene expression is

difficult to completely exclude, particularly patients using biological agents may

exhibit different molecular features.

The molecular typing system established in this study requires validation in

prospective clinical cohorts. Well-designed multicenter prospective studies can

evaluate the clinical utility, treatment guidance value, and prognostic prediction

capability of the typing system. Future research should integrate more omics data,

including proteomics, metabolomics, microbiomics, etc., to provide more
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comprehensive disease understanding. Based on identified subtype-specific

therapeutic targets, developing new targeted treatment strategies is an important

research direction. Design of combination therapy regimens should consider

molecular subtype characteristics to achieve precise individualized treatment.

Biomarker-guided clinical trial design will improve success rates of new drug

development, ultimately improving prognosis for AS patients.

5. Conclusion

This study successfully identified three molecular subtypes of HLA-B27 positive

ankylosing spondylitis by integrating multi-omics data from 407,734 samples,

providing a systematic molecular-level explanation for disease heterogeneity. Patients

with inflammation-dominant (37.8%), fibrosis-progressive (32.1%), and

immune-dysregulated (30.1%) subtypes exhibited distinct molecular features, clinical

phenotypes, and treatment response patterns. The established classification model

achieved 86.5% accuracy in an independent validation cohort, demonstrating good

clinical application potential. Subtype-specific treatment response analysis revealed

possibilities for precision therapy: inflammation-dominant patients showed a 72.3%

response rate to anti-TNF therapy, while immune-dysregulated patients had a 68.5%

response rate to JAK inhibitors, providing molecular basis for developing

individualized treatment strategies. The developed 35-gene minimal classification set

not only maintained 85.2% classification accuracy but also reduced clinical

application costs. The risk scoring model achieved a C-index of 0.78, providing a

reliable tool for disease prognosis assessment. The study also identified multiple

subtype-specific therapeutic targets with high druggability scores (>0.7), including

TNF (0.92), CTLA4 (0.91), and RANKL (0.87), indicating directions for new drug

development. By integrating transcriptomic, genomic, single-cell sequencing, and

immunomic data, the study constructed a complete disease map from genetic

susceptibility to molecular mechanisms, from cellular function to clinical phenotypes.

This molecular typing system not only deepens understanding of HLA-B27 positive

AS pathogenesis but, more importantly, provides practical classification tools and

treatment guidance frameworks for achieving precision medicine, with potential to

improve clinical management and prognosis for patients.
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