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Abstract: Accurate SOC estimation plays a central role in

lithium battery applications. It not only affects operational safety,

but also determines energy utilization efficiency and battery life

cycle length. Aiming at the lack of accuracy of the traditional

SOC estimation method under dynamic working conditions, this

paper adopts two algorithms, Extended Kalman Filter (EKF) and

Untraceable Kalman Filter (UKF), based on the second-order

RC equivalent circuit model of Li-ion battery to estimate the

SOC of the battery. By comparing and analyzing the estimation

error and convergence performance of the two filtering

algorithms, the results show that both EKF and UKF have good

dynamic response capability and high estimation accuracy,

among which UKF performs better in terms of nonlinear

processing and estimation stability. It provides theoretical basis

and technical support for the precise control and optimization of

battery management system (BMS).
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1. Introduction

With the global shift toward sustainable development and a circular carbon

economy, lithium-ion batteries have emerged as pivotal enablers of clean energy

transition, thanks to their high energy density, long lifespan, and minimal

environmental footprint (Niu et al., 2024). These batteries play a vital role in electric
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vehicles, energy storage infrastructures, and portable electronics, where effective

control and utilization strategies are essential to advancing sustainability. However,

the accurate assessment of a battery’s state of charge (SOC), which indicates the

remaining capacity, is essential for maintaining operational safety and prolonging

service life, and it remains a fundamental function of the battery management system

(BMS) (Wu et al., 2024). Accurate SOC estimation not only prevents overcharging or

over discharging and improves energy utilization efficiency, but also extends battery

life, thereby reducing resource consumption and e-waste and contributing to green

and low-carbon development (Nisama et al., 2024).

Currently, the SOC is commonly estimated using several established methods,

including open-circuit voltage measurement, ampere-hour integration, machine

learning-based data-driven techniques, and Kalman filtering schemes (Hassan et al.,

2022). However, the complex electrochemical characteristics of lithium batteries

make these methods have certain limitations in practical applications. Since the

open-circuit voltage method relies on long resting periods to obtain accurate

measurements, it becomes unsuitable for applications involving dynamic operating

conditions(Pillai et al., 2022); the ampere-time integration method is susceptible to

the accumulation of current measurement error and the difficulty of determining the

initial value, which leads to a large estimation bias with the accumulation of time(Liu

and Dai, 2022); and the data-driven method requires a higher quality of data and a

larger amount of data, so there are still great difficulties in the practical

application(Hossain et al., 2022). Kalman filtering is an efficient battery state

estimation algorithm that achieves optimal estimation of the state of charge (SOC)

through a unique prediction-correction mechanism (Cui et al., 2022). The algorithm is

particularly suitable for dealing with dynamic systems with noise, and is able to

provide continuous and accurate SOC estimation under the uncertainty conditions of

the battery charging and discharging process. Kalman filtering (KF) is an efficient

method for state estimation of linear systems, but has limitations when dealing with

nonlinear systems. To solve this problem, researchers have developed two improved

algorithms, EKF and UKF (Liu et al., 2023).

In this paper, a second-order RC equivalent circuit framework is initially

established to describe the transient characteristics of lithium-ion batteries. The

intrinsic parameters of the battery are extracted offline from pulse discharge test data

using a curve-fitting strategy based on exponential functions. The resulting model and
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parameters are then comprehensively assessed to confirm the validity and consistency

of the system. Building upon the second-order RC network, this study further

integrates two estimation techniques, EKF and UKF, to assess the state of charge

(SOC) of the lithium battery. The performance of these methods is evaluated through

both empirical experiments and numerical simulations. The performance of the two

methods under real working conditions is compared and analyzed to evaluate their

potential application in battery management systems.

2. Lithium battery model establishment and parameter

identification

2.1. Circuit Model Establishment

Accurate modeling of lithium-ion batteries is crucial for state analysis and

management (Mehta et al., 2021). In this paper, the second-order RC equivalent

circuit model is used, as shown in Figure 1, which can more accurately describe the

dynamic characteristics of the battery by characterizing the polarization process on

different time scales through two RC parallel networks (R1C1 and R2C2),

respectively. Where Uoc denotes the open-circuit voltage, R0 is the ohmic internal

resistance, U0 is the internal resistance voltage drop, and Vb is the terminal voltage.

Compared with the first-order model, this structure significantly improves the

simulation accuracy under fast charging and discharging conditions while maintaining

the computational efficiency, providing a reliable basis for SOC estimation.

Figure 1

Second-order RC equivalent circuit model of lithium battery

It follows from Kirchhoff’s Law:
�� = �oc − �1 − �2 − ��0 (1)

�1
��1
��

= � − �1
�1

(2)
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�2
��2
��

= � − �2
�2

(3)

The SOC of a lithium battery is defined as the ratio of its residual capacity to its

rated capacity, and is calculated as follows:

SOC(�) = SOC(�0) − ∫�0
� ��

��
�� (4)

2.2. Parameter Identification

2.2.1 SOC-OCV Relationship Curve

Before initiating the estimation process of lithium-ion battery state of charge

(SOC), it is imperative to carry out model-oriented parameter extraction for the

selected electrical representation. To ensure methodological robustness, this study

adopts a well-documented open dataset from the University of Maryland as the

experimental reference. The test subject is a single cylindrical 18650 Li-ion cell,

characterized by a nominal energy capacity of 2000 mAh, an upper charge threshold

of 4.2 V (corresponding to saturation), and a lower discharge cutoff at 2.5 V. This

battery underwent systematic charge-discharge protocols under diverse operational

profiles, thereby capturing detailed transient behavior and offering a dependable

numerical foundation for both model calibration and SOC tracking verification. As

presented in Figure 2, data from a hybrid pulse power characterization (HPPC)

sequence are utilized to extract the functional dependency between SOC levels and

the corresponding open-circuit potentials, which is subsequently approximated

through sixth-order polynomial regression. as shown in Figure3.

Figure 2

HPPC data

Figure 3
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SOC-OCV curve

The equation describing the function of OCV versus SOC is obtained by fitting a

sixth-degree polynomial to the SOC versus OCV curve:

OCV=4.4747 ∗ ���6 − 7.4769 ∗ ���5 − 4.0312 ∗ ���4 + 15.3296 ∗ ���3

−10.4296 ∗ ���2 + 3.0586 ∗ ��� + 3.2501 5

2.2.2 SOC-OCV Relationship Curve

Utilizing the experimental outputs from the Hybrid Pulse Power Characterization

(HPPC) protocol, voltage measurements corresponding to the SOC interval between

100% and 90% were initially extracted and processed within the MATLAB

environment. A dataset was then constructed with time mapped to the x-axis and

terminal voltage to the y-axis, followed by appropriate data reduction to streamline

subsequent modeling. Thereafter, MATLAB’s curve fitting utilities were employed,

where an exponential-type user-defined model was applied to perform parameter

regression. The resulting estimated parameters are summarized in Table 1.

Table 1

Parameter identification results

SOC 0 /R  1 /R  1 /C F 2 /R  2 /C F

0.1 0.341 0.0076 304329 0.0129 5797

0.2 0.238 0.0185 5695 0.0088 137434

0.3 0.231 0.02 3913 0.0096 134490

0.4 0.227 0.0145 5122 0.0063 292023

0.5 0.228 0.0165 2839 0.008 188724

0.6 0.2373 0.0089 203284 0.0288 14157
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2.3. Model Validation

To assess the fidelity of the constructed battery model and validate the extracted

parameter set, a simulation framework was developed using the MATLAB/Simulink

environment. The identified internal characteristics, derived from offline calibration,

were embedded into the simulation structure. Model performance was then examined

by aligning simulated output voltage with empirical voltage data obtained through

experimentation. In this analysis, current profiles under HPPC testing conditions

served as inputs, and the voltage comparison results between the numerical simulation

and physical measurements are illustrated in Figures 4 and 5.

Figure 4

End Voltage Comparison

Figure 5

End voltage error

0.7 0.2445 0.0062 232372 0.026 2174

0.8 0.231 0.0059 223701 0.0225 1406

0.9 0.228 0.0052 11316 0.017 1713
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From the figure, it can be seen that the modeling error only increases

significantly at the end of discharge, which is mainly attributed to the intensification

of the internal chemical reaction of the battery in the low SOC stage. In the rest of the

stages, the end-voltage error is always controlled within 0.03 V, which meets the

requirement of battery modeling accuracy. It is verified that the constructed model has

high accuracy and the validity of parameter identification, which lays a reliable

foundation for the subsequent SOC estimation work.

3. Battery SOC estimation based on Kalman filtering

3.1 EKF serves as a widely adopted technique for estimating internal states in

systems exhibiting nonlinear behavior. Within the context of lithium-ion battery SOC

prediction, the inherent nonlinearity between SOC, voltage, and current poses

modeling challenges. To address this, EKF applies a local linear approximation to the

nonlinear dynamics via first-order Taylor series expansion, enabling more accurate

state tracking and improved adaptability to the time-varying characteristics of battery

operation.

The basic working mechanism of EKF can be divided into two main phases:

1. Prediction step: Based on the predefined state-space representation of the

battery system, the SOC at the subsequent time step is forecasted. This mathematical

model is typically derived from the lithium batteries equivalent circuit, in which the

current is treated as the system excitation, the terminal voltage serves as the

observable output, and SOC functions as the core internal state. The future state is

inferred by utilizing the present state information along with the corresponding input

signal.

Prediction Equation:

���|�−1 = �(���−1, ��−1) + ��−1 (6)

2. Correction step: During this stage, the EKF algorithm incorporates real-time

voltage observations to refine the previously predicted SOC by adjusting the estimate

based on the discrepancy between observed and simulated outputs. This adjustment is

achieved by computing the estimation error covariance, which is then used to correct

the SOC value, thereby enhancing its consistency with the actual system behavior.

Updating the equation:
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���|� = ���|�−1 + ��(�� − ℎ(���|�−1, ��)) (7)

3.2 Traceless Kalman Based on the traceless (UT) transform, the battery

condition can be estimated more accurately. The basic principle of UT transform is

given below.

The UT transform is the key step of UKF, and 2n+1 Sigma points can be

obtained by sampling according to the symmetric distribution. The formula is shown

in the following equation.
�� = �� , � = 0

�� = �� + ( � + � �)� , � = 1,2,3, …, �
�� = �� − ( � + � �)�−� , � = � + 1, � + 2, …, 2�

8

The corresponding weights are:
��

0 = �/(� + �)

��
0 =

�
� + �

+ 1 − �2 + �

��
� = ��

� =
�

2(� + �)
, � = 0,2…, 2�

9

4. Simulation Verification andAnalysis

The SOC estimation procedures based on EKF and UKF are implemented within

the MATLAB/Simulink framework. To validate the effectiveness of both methods,

simulations are carried out under the Hybrid Pulse Power Characterization (HPPC)

profile, where the initial SOC is set to 0.9 for convergence evaluation. The

ampere-hour accumulation technique is employed as a benchmark reference to assess

the estimation accuracy of both filters, and the corresponding comparison results are

presented in Figures 6 and 7. Calculate the errors of the two algorithms, as shown in

Table 2.

Figure 6

SOC estimation curve
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Figure 7

SOC error curves

Table 2

Comparison of EKF and UKF errors

Under conditions where the initial SOC estimate deviates from the true value,

both EKF and UKF demonstrate strong convergence performance, enabling rapid

alignment between estimated and actual SOC. Experimental evaluation reveals that

the mean estimation error for both algorithms remain within 2%, confirming their

high prediction accuracy. Nevertheless, in the later stages of the simulation, UKF

exhibits a noticeably superior performance compared to EKF, primarily because EKF

relies on linearization and thus neglects higher-order nonlinear dynamics during state

updates.

5. Conclusion

In this study, a second-order resistor–capacitor equivalent model was developed

to represent the electrical characteristics of a lithium-ion battery, and its parameters

algorithm MAE RMSE

EKF 1.304% 2.22%

UKF 1.301% 1.80%
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were determined through exponential function fitting. Building on this foundation, a

corresponding simulation framework was implemented within the

MATLAB/Simulink environment to evaluate model accuracy. Furthermore, the

extended Kalman filter and the unscented Kalman filter were applied independently to

perform estimation of the battery’s state of charge. By comparing the estimated SOC

values from both filtering techniques with reference values, the analysis confirms that

Kalman-based approaches offer reliable accuracy and robustness, with the unscented

Kalman filter exhibiting superior performance compared to the extended Kalman

filter.
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