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developed incorporating temporal biomarker dynamics and
clinical variables. Model performance was evaluated through time-dependent receiver operating
characteristic curves and decision curve analysis. During the 12-month follow-up period, 38
patients experienced renal flares, representing 35.2% of the cohort. The XGBoost-based integrated
model achieved superior predictive performance with area under the curve values of 0.82 at 30
days, 0.79 at 60 days, and 0.76 at 90 days before flare onset, substantially outperforming
individual biomarkers and conventional combined approaches. The model provided a median lead
time of 42 days for flare prediction, compared to 18 days using traditional biomarker assessment.

Risk stratification successfully categorized patients into three groups with flare rates of 78.6% for

high-risk, 35.7% for intermediate-risk, and 7.9% for low-risk patients. This integrated approach
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enables personalized risk assessment and early intervention strategies, potentially transforming
reactive management into proactive care for lupus nephritis patients. The framework offers a
non-invasive, clinically applicable tool for optimizing resource allocation while improving patient

outcomes.

Keywords: lupus nephritis; artificial intelligence; urinary biomarkers; machine learning; flare

prediction

1. Introduction

Lupus nephritis (LN) affects approximately 40-60% of patients with systemic
lupus erythematosus and remains a leading cause of morbidity and mortality in this
population. Early detection and prediction of LN flares are crucial for preventing
irreversible kidney damage and improving long-term outcomes. Recent advances in
urinary biomarker discovery have shown promising results in LN diagnosis and
monitoring. Stanley et al. (2020) identified a spectrum of urinary proteins including
ALCAM, VCAM-1, and PF-4 that effectively distinguish active LN across different
ethnic populations. The emergence of machine learning approaches has revolutionized
the field of SLE research, offering unprecedented opportunities for integrating
complex multi-dimensional data (Zhan et al., 2024).

Deep learning models have demonstrated remarkable capability in predicting LN
flares using dynamic time-series data. Huang et al. (2024) developed a model
incorporating longitudinal clinical variables that achieved superior predictive
accuracy compared to conventional methods. Similarly, Yang et al. (2024) compared
multiple machine learning algorithms for identifying proliferative LN, with XGBoost
showing optimal performance. Neural network architectures have proven particularly
effective in prognostication, as demonstrated by Stojanowski et al. (2022), who
achieved 85% accuracy in predicting complete remission.

The application of systems biology approaches has enhanced understanding of
biomarker networks in LN pathogenesis (Omer et al., 2024). Podocyte injury markers,
including NGAL and KIM-1, have emerged as sensitive indicators of early renal
damage (Guo et al., 2024). Wang et al. (2023) developed a clinically friendly machine

learning pipeline that simplified LN diagnosis while maintaining high diagnostic
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accuracy. Despite these advances, comprehensive systematic reviews have highlighted
significant limitations in current biomarker studies, including lack of external
validation and standardization (Palazzo et al., 2022). Novel biomarkers such as IL-35
show promise but require further validation in diverse populations (Nassif, 2021).
However, existing studies predominantly focus on either biomarkers or machine
learning approaches in isolation, failing to leverage their synergistic potential for flare
prediction. Most models lack the integration of temporal biomarker dynamics with Al
algorithms specifically designed for early warning systems. This study addresses
these gaps by developing an integrated Al framework that combines multiple urinary
biomarkers with advanced machine learning algorithms to achieve both early
prediction and prognostication of LN flares, potentially transforming reactive

management into proactive intervention strategies.

2. Methods

2.1. Study Population and Biomarker Assessment

This prospective cohort study enrolled 108 patients with biopsy-proven lupus
nephritis from a tertiary referral center between January 2021 and December 2022.
Participants met the 2019 European League Against Rheumatism/American College
of Rheumatology classification criteria for systemic lupus erythematosus and had
histologically confirmed lupus nephritis according to the International Society of
Nephrology/Renal Pathology Society classification. Exclusion criteria included
pregnancy, active infection, malignancy, end-stage renal disease requiring dialysis,
and recent kidney transplantation within the past year. Sample size calculation was
performed using the formula for comparing diagnostic accuracies between two

methods:

_ o+ )Pxax x(1- )

- Y (1)
(1= 2)

where Z,=1.96 for a = 0.05, Z;=0.84 for 80% power, p;=0.80(expected accuracy of

Al-integrated model), and p,=0.60 (expected accuracy of conventional biomarkers).

This yielded a minimum requirement of 79 patients experiencing flares. With an

anticipated flare rate of 35% based on previous literature, the total enrollment target
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was set at 108 patients to ensure adequate statistical power. The study protocol
received institutional review board approval, and all participants provided written
informed consent. The study protocol received institutional review board approval,
and all participants provided written informed consent.

Lupus nephritis flare was defined as an increase in proteinuria (>0.5 g/day if
baseline <0.5 g/day, or doubling if baseline >0.5 g/day), accompanied by active
urinary sediment or a 25% decline in estimated glomerular filtration rate. The primary
outcome measure was the occurrence of renal flare within 12 months of enrollment,
while secondary outcomes included time to flare and flare severity classification
according to established criteria.

The wurinary biomarker panel comprised neutrophil gelatinase-associated
lipocalin (NGAL), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis
factor-like weak inducer of apoptosis (TWEAK), and vascular cell adhesion
molecule-1 (VCAM-1). Fresh morning urine samples were collected monthly with a
median compliance rate of 91% (interquartile range: 84-95%). Samples were
immediately centrifuged at 3000g for 10 minutes and stored at -80°C until batch
analysis using enzyme-linked immunosorbent assay. Clinical data, including Systemic
Lupus Erythematosus Disease Activity Index scores, complement levels, anti-dsDNA
antibodies, and concurrent immunosuppressive medications, were systematically

recorded at each visit.

2.2. Machine Learning Model Development and Validation

Data preprocessing involved handling missing values through multiple
imputation using chained equations and normalizing biomarker concentrations using
log transformation to address skewed distributions. Feature engineering incorporated
both static clinical variables and dynamic biomarker trajectories, creating temporal
features that captured rate of change, moving averages, and variability coefficients
over 30, 60, and 90-day windows. This approach enabled the model to identify subtle
patterns and trends preceding clinical flares.

The study evaluated three machine learning algorithms: random forest, extreme
gradient boosting (XGBoost), and logistic regression with elastic net regularization as
a baseline comparator. Hyperparameter optimization employed Bayesian search with

five-fold stratified cross-validation to prevent overfitting while maximizing predictive
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performance. The random forest model utilized 500 trees with maximum depth of 10
and minimum samples per leaf of 5, while XGBoost incorporated early stopping
based on validation set performance with 100 rounds of patience. Class imbalance
was addressed through synthetic minority oversampling technique applied exclusively
to the training set.

Model performance assessment utilized time-dependent receiver operating
characteristic curves to evaluate prediction accuracy at multiple time points before
flare onset. The area under the curve, sensitivity, specificity, positive and negative
predictive values were calculated with 95% confidence intervals using bootstrapping
with 1000 iterations. Feature importance analysis employed Shapley additive
explanations values to enhance model interpretability and identify key predictive
biomarkers contributing to flare prediction.

The dataset was divided into training (60%), validation (20%), and test (20%)
sets using stratified random sampling to maintain consistent flare prevalence across
subsets. Model calibration was assessed using Hosmer-Lemeshow test and calibration
plots comparing predicted probabilities against observed outcomes. Additionally,
decision curve analysis evaluated the clinical utility by quantifying net benefit across
different probability thresholds for intervention, comparing the Al-integrated model

against treat-all and treat-none strategies.

3. Results

3.1. Baseline Characteristics and Biomarker Profiles

The study cohort comprised 108 patients with biopsy-proven lupus nephritis,
predominantly female (80.6%) with a median age of 32 years. The majority had Class
1T or IV lupus nephritis (66.7%) with a median disease duration of 4.2 years. During
the 12-month follow-up period, 38 patients (35.2%) experienced renal flares, with
most events occurring within the first six months.

Baseline urinary biomarker analysis revealed significant elevations in patients
who subsequently developed flares compared to those who remained stable. NGAL
and MCP-1 showed the most pronounced differences (p<0.001), followed by
TWEAK and VCAM-1 (p<0.01). Strong correlations were observed between NGAL

and MCP-1 levels, as well as between TWEAK concentrations and disease activity
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scores, suggesting these biomarkers reflect distinct but complementary

pathophysiological processes.

3.2. Early Detection and Prognostic Performance

The Al-integrated model demonstrated superior predictive performance across all
evaluated time windows. Table 1 presents the comprehensive performance metrics,
highlighting the consistent advantage of the XGBoost-based integrated approach over
traditional methods.

Table 1

Comprehensive Performance Comparison

Prediction Window Method AUC (95% CI)  Sensitivity ~ Specificity

30 days Individual Biomarkers  0.68 (0.61-0.75) 65.8% 68.6%
Combined Biomarkers  0.74 (0.67-0.81) 71.1% 72.9%

Al-Integrated Model 0.82 (0.76-0.88) 84.2% 77.1%

60 days Individual Biomarkers  0.65 (0.58-0.72) 63.2% 65.7%
Combined Biomarkers  0.71 (0.64-0.78) 68.4% 70.0%

Al-Integrated Model 0.79 (0.73-0.85) 78.9% 75.7%

90 days Individual Biomarkers  0.63 (0.56-0.70) 60.5% 64.3%
Combined Biomarkers  0.69 (0.62-0.76) 65.8% 68.6%

Al-Integrated Model 0.76 (0.70-0.82) 73.7% 74.3%

The Al-integrated model achieved its highest performance at the 30-day
prediction window with an AUC of 0.82, maintaining clinically meaningful accuracy
even at 90 days before flare onset. Lead time analysis revealed a median prediction
advantage of 42 days for the integrated model compared to 18 days for combined
biomarkers alone. As illustrated in Figure 1, the receiver operating characteristic
curves demonstrate the progressive improvement from individual biomarkers through

combined assessment to full Al integration.
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Figure 1
Multi-temporal ROC Curves
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Feature importance analysis identified MCP-1 and NGAL as the most influential
predictive biomarkers. The XGBoost algorithm outperformed both random forest and
logistic regression approaches, demonstrating the value of gradient boosting for

capturing complex biomarker interactions in this clinical context.

3.3. Risk Stratification and Clinical Utility

The Al-integrated model successfully stratified patients into three distinct risk
(25.9%) demonstrated a 78.6% rate,
intermediate-risk patients (38.9%) showed 35.7%, while low-risk patients (35.2%)

categories. High-risk patients flare

experienced only 7.9% flare occurrence during follow-up (p<0.001). This
stratification remained prognostically valid throughout the extended follow-up period,
with significant hazard ratio differences maintained at 6, 12, and 24 months.

Decision curve analysis, presented in Figure 2, demonstrated substantial net
benefit across clinically relevant threshold probabilities. At the optimal threshold of
30%, the model provided meaningful clinical utility by correctly identifying high-risk
patients requiring intensive monitoring while avoiding unnecessary interventions in
low-risk individuals. The implementation of this risk-stratified approach could
potentially reduce unnecessary intensive monitoring in approximately one-third of
patients while ensuring appropriate surveillance for those at highest risk.

Figure 2
Risk Stratification and Clinical Impact
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A. Kaplan-Meier Survival Curves B. Decision Curve Analysis
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4. Discussion

This study demonstrates the successful integration of artificial intelligence with
urinary biomarkers for early prediction and prognostication of lupus nephritis flares.
The observed flare rate of 35.2% during the 12-month follow-up aligns with
previously reported incidence ranges, validating the representativeness of the study
cohort. The significant elevation of NGAL and MCP-1 in patients who subsequently
developed flares support their role as sensitive indicators of subclinical renal
inflammation. These biomarkers likely reflect distinct pathophysiological processes,
with NGAL indicating tubular injury and MCP-1 representing monocyte recruitment
and activation within the kidney. The strong correlation observed between these
markers suggests a coordinated inflammatory response preceding clinical
manifestations, providing a biological rationale for their combined use in predictive
models.

The Al-integrated model’s ability to predict flares with an AUC of 0.82 at 30
days represents a meaningful advance over existing approaches, which typically
achieve AUC values between 0.65-0.75. The median lead time of 42 days provides a
clinically actionable window for preventive interventions. While previous studies
have focused primarily on concurrent disease activity assessment, this predictive
capability enables proactive rather than reactive management. The superior
performance of XGBoost suggests that the complex, non-linear interactions between
biomarkers and clinical variables are better captured through ensemble learning

methods than traditional statistical approaches. The progressive decline in predictive
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accuracy over longer time intervals reflects the dynamic nature of lupus nephritis and
underscores the need for regular biomarker monitoring.

The risk stratification framework enables personalized management strategies,
with high-risk patients benefiting from intensified monitoring and preemptive therapy
adjustment. The identification of a low-risk group with only 7.9% flare incidence
suggests that approximately one-third of patients could safely receive less intensive
surveillance, reducing healthcare burden and patient anxiety. Decision curve analysis
confirms substantial net benefit across clinically relevant probability thresholds,
supporting the model’s utility in real-world practice. Implementation of this approach
could optimize resource allocation while maintaining or improving patient outcomes.

Several limitations warrant consideration. The single-center design may limit
generalizability, necessitating multicenter validation. The 12-month follow-up period,
while adequate for initial assessment, may not capture late flares or long-term
prognostic accuracy. Additionally, the model’s performance in patients with recent
medication changes requires further investigation. Future studies should explore the
integration of additional biomarkers, evaluate cost-effectiveness in different
healthcare settings, and develop user-friendly clinical decision support tools.
Prospective interventional trials are needed to confirm whether model-guided

management improves patient outcomes compared to standard care.

5. Conclusion

This study successfully demonstrates the integration of artificial intelligence with
urinary biomarkers to achieve both early detection and prognostication of lupus
nephritis flares, addressing two critical challenges in disease management. The
Al-integrated model achieved an AUC of 0.82 for 30-day prediction, substantially
exceeding the performance of conventional approaches, while maintaining clinically
meaningful accuracy across extended time windows. The identification of a 42-day
median lead time before clinical flare manifestation provides an unprecedented
opportunity for preemptive therapeutic intervention, potentially transforming the
reactive nature of current management strategies into a proactive approach.

The risk stratification framework represents a significant advancement in

personalized lupus nephritis management, enabling clinicians to allocate resources
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efficiently while optimizing individual patient care. The ability to identify low-risk
patients who require less intensive monitoring, alongside high-risk individuals who
benefit from enhanced surveillance, offers a practical solution to the challenge of
balancing comprehensive care with healthcare resource constraints. The combined use
of NGAL, MCP-1, TWEAK, and VCAM-1, enhanced through machine learning
algorithms, provides a non-invasive monitoring tool that could be readily
implemented in routine clinical practice.

While these findings are promising, translation into clinical practice requires
careful validation across diverse populations and healthcare settings. Future
multicenter studies should evaluate the model’s performance across different
ethnicities, disease severities, and treatment regimens. Prospective randomized
controlled trials are essential to determine whether implementation of this predictive
framework improves long-term renal outcomes and quality of life for patients with
lupus nephritis. Additionally, health economic analyses should assess the
cost-effectiveness of routine biomarker monitoring and Al-based risk assessment.

The integration of artificial intelligence with urinary biomarkers represents a
paradigm shift in lupus nephritis management, moving from reactive treatment of
established flares to predictive, personalized care. This approach holds substantial
promise for reducing morbidity, preserving renal function, and improving the overall

prognosis of patients with this challenging autoimmune condition.
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