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Abstract: Lupus nephritis flares significantly contribute to

morbidity and mortality in systemic lupus erythematosus

patients, necessitating improved predictive tools for early

intervention. This study developed and validated an artificial

intelligence framework integrating urinary biomarkers for

early prediction and prognostication of lupus nephritis flares.

A prospective cohort of 108 biopsy-proven lupus nephritis

patients was enrolled between January 2021 and December

2022. Monthly urine samples were collected to measure

neutrophil gelatinase-associated lipocalin, monocyte

chemoattractant protein-1, tumor necrosis factor-like weak

inducer of apoptosis, and vascular cell adhesion molecule-1.

Machine learning algorithms including random forest,

extreme gradient boosting, and logistic regression were

developed incorporating temporal biomarker dynamics and

clinical variables. Model performance was evaluated through time-dependent receiver operating

characteristic curves and decision curve analysis. During the 12-month follow-up period, 38

patients experienced renal flares, representing 35.2% of the cohort. The XGBoost-based integrated

model achieved superior predictive performance with area under the curve values of 0.82 at 30

days, 0.79 at 60 days, and 0.76 at 90 days before flare onset, substantially outperforming

individual biomarkers and conventional combined approaches. The model provided a median lead

time of 42 days for flare prediction, compared to 18 days using traditional biomarker assessment.

Risk stratification successfully categorized patients into three groups with flare rates of 78.6% for

high-risk, 35.7% for intermediate-risk, and 7.9% for low-risk patients. This integrated approach
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enables personalized risk assessment and early intervention strategies, potentially transforming

reactive management into proactive care for lupus nephritis patients. The framework offers a

non-invasive, clinically applicable tool for optimizing resource allocation while improving patient

outcomes.

Keywords: lupus nephritis; artificial intelligence; urinary biomarkers; machine learning; flare

prediction

1. Introduction

Lupus nephritis (LN) affects approximately 40-60% of patients with systemic

lupus erythematosus and remains a leading cause of morbidity and mortality in this

population. Early detection and prediction of LN flares are crucial for preventing

irreversible kidney damage and improving long-term outcomes. Recent advances in

urinary biomarker discovery have shown promising results in LN diagnosis and

monitoring. Stanley et al. (2020) identified a spectrum of urinary proteins including

ALCAM, VCAM-1, and PF-4 that effectively distinguish active LN across different

ethnic populations. The emergence of machine learning approaches has revolutionized

the field of SLE research, offering unprecedented opportunities for integrating

complex multi-dimensional data (Zhan et al., 2024).

Deep learning models have demonstrated remarkable capability in predicting LN

flares using dynamic time-series data. Huang et al. (2024) developed a model

incorporating longitudinal clinical variables that achieved superior predictive

accuracy compared to conventional methods. Similarly, Yang et al. (2024) compared

multiple machine learning algorithms for identifying proliferative LN, with XGBoost

showing optimal performance. Neural network architectures have proven particularly

effective in prognostication, as demonstrated by Stojanowski et al. (2022), who

achieved 85% accuracy in predicting complete remission.

The application of systems biology approaches has enhanced understanding of

biomarker networks in LN pathogenesis (Omer et al., 2024). Podocyte injury markers,

including NGAL and KIM-1, have emerged as sensitive indicators of early renal

damage (Guo et al., 2024). Wang et al. (2023) developed a clinically friendly machine

learning pipeline that simplified LN diagnosis while maintaining high diagnostic
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accuracy. Despite these advances, comprehensive systematic reviews have highlighted

significant limitations in current biomarker studies, including lack of external

validation and standardization (Palazzo et al., 2022). Novel biomarkers such as IL-35

show promise but require further validation in diverse populations (Nassif, 2021).

However, existing studies predominantly focus on either biomarkers or machine

learning approaches in isolation, failing to leverage their synergistic potential for flare

prediction. Most models lack the integration of temporal biomarker dynamics with AI

algorithms specifically designed for early warning systems. This study addresses

these gaps by developing an integrated AI framework that combines multiple urinary

biomarkers with advanced machine learning algorithms to achieve both early

prediction and prognostication of LN flares, potentially transforming reactive

management into proactive intervention strategies.

2. Methods

2.1. Study Population and Biomarker Assessment

This prospective cohort study enrolled 108 patients with biopsy-proven lupus

nephritis from a tertiary referral center between January 2021 and December 2022.

Participants met the 2019 European League Against Rheumatism/American College

of Rheumatology classification criteria for systemic lupus erythematosus and had

histologically confirmed lupus nephritis according to the International Society of

Nephrology/Renal Pathology Society classification. Exclusion criteria included

pregnancy, active infection, malignancy, end-stage renal disease requiring dialysis,

and recent kidney transplantation within the past year. Sample size calculation was

performed using the formula for comparing diagnostic accuracies between two

methods:

� = (��+��)2×2×�×(1−�)

(�1−�2)2 (1)

where Zα=1.96 for α = 0.05, Zβ=0.84 for 80% power, p1=0.80(expected accuracy of

AI-integrated model), and p2=0.60(expected accuracy of conventional biomarkers).

This yielded a minimum requirement of 79 patients experiencing flares. With an

anticipated flare rate of 35% based on previous literature, the total enrollment target
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was set at 108 patients to ensure adequate statistical power. The study protocol

received institutional review board approval, and all participants provided written

informed consent. The study protocol received institutional review board approval,

and all participants provided written informed consent.

Lupus nephritis flare was defined as an increase in proteinuria (>0.5 g/day if

baseline <0.5 g/day, or doubling if baseline ≥0.5 g/day), accompanied by active

urinary sediment or a 25% decline in estimated glomerular filtration rate. The primary

outcome measure was the occurrence of renal flare within 12 months of enrollment,

while secondary outcomes included time to flare and flare severity classification

according to established criteria.

The urinary biomarker panel comprised neutrophil gelatinase-associated

lipocalin (NGAL), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis

factor-like weak inducer of apoptosis (TWEAK), and vascular cell adhesion

molecule-1 (VCAM-1). Fresh morning urine samples were collected monthly with a

median compliance rate of 91% (interquartile range: 84-95%). Samples were

immediately centrifuged at 3000g for 10 minutes and stored at -80°C until batch

analysis using enzyme-linked immunosorbent assay. Clinical data, including Systemic

Lupus Erythematosus Disease Activity Index scores, complement levels, anti-dsDNA

antibodies, and concurrent immunosuppressive medications, were systematically

recorded at each visit.

2.2. Machine Learning Model Development and Validation

Data preprocessing involved handling missing values through multiple

imputation using chained equations and normalizing biomarker concentrations using

log transformation to address skewed distributions. Feature engineering incorporated

both static clinical variables and dynamic biomarker trajectories, creating temporal

features that captured rate of change, moving averages, and variability coefficients

over 30, 60, and 90-day windows. This approach enabled the model to identify subtle

patterns and trends preceding clinical flares.

The study evaluated three machine learning algorithms: random forest, extreme

gradient boosting (XGBoost), and logistic regression with elastic net regularization as

a baseline comparator. Hyperparameter optimization employed Bayesian search with

five-fold stratified cross-validation to prevent overfitting while maximizing predictive
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performance. The random forest model utilized 500 trees with maximum depth of 10

and minimum samples per leaf of 5, while XGBoost incorporated early stopping

based on validation set performance with 100 rounds of patience. Class imbalance

was addressed through synthetic minority oversampling technique applied exclusively

to the training set.

Model performance assessment utilized time-dependent receiver operating

characteristic curves to evaluate prediction accuracy at multiple time points before

flare onset. The area under the curve, sensitivity, specificity, positive and negative

predictive values were calculated with 95% confidence intervals using bootstrapping

with 1000 iterations. Feature importance analysis employed Shapley additive

explanations values to enhance model interpretability and identify key predictive

biomarkers contributing to flare prediction.

The dataset was divided into training (60%), validation (20%), and test (20%)

sets using stratified random sampling to maintain consistent flare prevalence across

subsets. Model calibration was assessed using Hosmer-Lemeshow test and calibration

plots comparing predicted probabilities against observed outcomes. Additionally,

decision curve analysis evaluated the clinical utility by quantifying net benefit across

different probability thresholds for intervention, comparing the AI-integrated model

against treat-all and treat-none strategies.

3. Results

3.1. Baseline Characteristics and Biomarker Profiles

The study cohort comprised 108 patients with biopsy-proven lupus nephritis,

predominantly female (80.6%) with a median age of 32 years. The majority had Class

III or IV lupus nephritis (66.7%) with a median disease duration of 4.2 years. During

the 12-month follow-up period, 38 patients (35.2%) experienced renal flares, with

most events occurring within the first six months.

Baseline urinary biomarker analysis revealed significant elevations in patients

who subsequently developed flares compared to those who remained stable. NGAL

and MCP-1 showed the most pronounced differences (p<0.001), followed by

TWEAK and VCAM-1 (p<0.01). Strong correlations were observed between NGAL

and MCP-1 levels, as well as between TWEAK concentrations and disease activity
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scores, suggesting these biomarkers reflect distinct but complementary

pathophysiological processes.

3.2. Early Detection and Prognostic Performance

The AI-integrated model demonstrated superior predictive performance across all

evaluated time windows. Table 1 presents the comprehensive performance metrics,

highlighting the consistent advantage of the XGBoost-based integrated approach over

traditional methods.

Table 1

Comprehensive Performance Comparison

The AI-integrated model achieved its highest performance at the 30-day

prediction window with an AUC of 0.82, maintaining clinically meaningful accuracy

even at 90 days before flare onset. Lead time analysis revealed a median prediction

advantage of 42 days for the integrated model compared to 18 days for combined

biomarkers alone. As illustrated in Figure 1, the receiver operating characteristic

curves demonstrate the progressive improvement from individual biomarkers through

combined assessment to full AI integration.

Prediction Window Method AUC (95% CI) Sensitivity Specificity

30 days Individual Biomarkers 0.68 (0.61-0.75) 65.8% 68.6%

Combined Biomarkers 0.74 (0.67-0.81) 71.1% 72.9%

AI-Integrated Model 0.82 (0.76-0.88) 84.2% 77.1%

60 days Individual Biomarkers 0.65 (0.58-0.72) 63.2% 65.7%

Combined Biomarkers 0.71 (0.64-0.78) 68.4% 70.0%

AI-Integrated Model 0.79 (0.73-0.85) 78.9% 75.7%

90 days Individual Biomarkers 0.63 (0.56-0.70) 60.5% 64.3%

Combined Biomarkers 0.69 (0.62-0.76) 65.8% 68.6%

AI-Integrated Model 0.76 (0.70-0.82) 73.7% 74.3%
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Figure 1

Multi-temporal ROC Curves

Feature importance analysis identified MCP-1 and NGAL as the most influential

predictive biomarkers. The XGBoost algorithm outperformed both random forest and

logistic regression approaches, demonstrating the value of gradient boosting for

capturing complex biomarker interactions in this clinical context.

3.3. Risk Stratification and Clinical Utility

The AI-integrated model successfully stratified patients into three distinct risk

categories. High-risk patients (25.9%) demonstrated a 78.6% flare rate,

intermediate-risk patients (38.9%) showed 35.7%, while low-risk patients (35.2%)

experienced only 7.9% flare occurrence during follow-up (p<0.001). This

stratification remained prognostically valid throughout the extended follow-up period,

with significant hazard ratio differences maintained at 6, 12, and 24 months.

Decision curve analysis, presented in Figure 2, demonstrated substantial net

benefit across clinically relevant threshold probabilities. At the optimal threshold of

30%, the model provided meaningful clinical utility by correctly identifying high-risk

patients requiring intensive monitoring while avoiding unnecessary interventions in

low-risk individuals. The implementation of this risk-stratified approach could

potentially reduce unnecessary intensive monitoring in approximately one-third of

patients while ensuring appropriate surveillance for those at highest risk.

Figure 2

Risk Stratification and Clinical Impact
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4. Discussion

This study demonstrates the successful integration of artificial intelligence with

urinary biomarkers for early prediction and prognostication of lupus nephritis flares.

The observed flare rate of 35.2% during the 12-month follow-up aligns with

previously reported incidence ranges, validating the representativeness of the study

cohort. The significant elevation of NGAL and MCP-1 in patients who subsequently

developed flares support their role as sensitive indicators of subclinical renal

inflammation. These biomarkers likely reflect distinct pathophysiological processes,

with NGAL indicating tubular injury and MCP-1 representing monocyte recruitment

and activation within the kidney. The strong correlation observed between these

markers suggests a coordinated inflammatory response preceding clinical

manifestations, providing a biological rationale for their combined use in predictive

models.

The AI-integrated model’s ability to predict flares with an AUC of 0.82 at 30

days represents a meaningful advance over existing approaches, which typically

achieve AUC values between 0.65-0.75. The median lead time of 42 days provides a

clinically actionable window for preventive interventions. While previous studies

have focused primarily on concurrent disease activity assessment, this predictive

capability enables proactive rather than reactive management. The superior

performance of XGBoost suggests that the complex, non-linear interactions between

biomarkers and clinical variables are better captured through ensemble learning

methods than traditional statistical approaches. The progressive decline in predictive
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accuracy over longer time intervals reflects the dynamic nature of lupus nephritis and

underscores the need for regular biomarker monitoring.

The risk stratification framework enables personalized management strategies,

with high-risk patients benefiting from intensified monitoring and preemptive therapy

adjustment. The identification of a low-risk group with only 7.9% flare incidence

suggests that approximately one-third of patients could safely receive less intensive

surveillance, reducing healthcare burden and patient anxiety. Decision curve analysis

confirms substantial net benefit across clinically relevant probability thresholds,

supporting the model’s utility in real-world practice. Implementation of this approach

could optimize resource allocation while maintaining or improving patient outcomes.

Several limitations warrant consideration. The single-center design may limit

generalizability, necessitating multicenter validation. The 12-month follow-up period,

while adequate for initial assessment, may not capture late flares or long-term

prognostic accuracy. Additionally, the model’s performance in patients with recent

medication changes requires further investigation. Future studies should explore the

integration of additional biomarkers, evaluate cost-effectiveness in different

healthcare settings, and develop user-friendly clinical decision support tools.

Prospective interventional trials are needed to confirm whether model-guided

management improves patient outcomes compared to standard care.

5. Conclusion

This study successfully demonstrates the integration of artificial intelligence with

urinary biomarkers to achieve both early detection and prognostication of lupus

nephritis flares, addressing two critical challenges in disease management. The

AI-integrated model achieved an AUC of 0.82 for 30-day prediction, substantially

exceeding the performance of conventional approaches, while maintaining clinically

meaningful accuracy across extended time windows. The identification of a 42-day

median lead time before clinical flare manifestation provides an unprecedented

opportunity for preemptive therapeutic intervention, potentially transforming the

reactive nature of current management strategies into a proactive approach.

The risk stratification framework represents a significant advancement in

personalized lupus nephritis management, enabling clinicians to allocate resources
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efficiently while optimizing individual patient care. The ability to identify low-risk

patients who require less intensive monitoring, alongside high-risk individuals who

benefit from enhanced surveillance, offers a practical solution to the challenge of

balancing comprehensive care with healthcare resource constraints. The combined use

of NGAL, MCP-1, TWEAK, and VCAM-1, enhanced through machine learning

algorithms, provides a non-invasive monitoring tool that could be readily

implemented in routine clinical practice.

While these findings are promising, translation into clinical practice requires

careful validation across diverse populations and healthcare settings. Future

multicenter studies should evaluate the model’s performance across different

ethnicities, disease severities, and treatment regimens. Prospective randomized

controlled trials are essential to determine whether implementation of this predictive

framework improves long-term renal outcomes and quality of life for patients with

lupus nephritis. Additionally, health economic analyses should assess the

cost-effectiveness of routine biomarker monitoring and AI-based risk assessment.

The integration of artificial intelligence with urinary biomarkers represents a

paradigm shift in lupus nephritis management, moving from reactive treatment of

established flares to predictive, personalized care. This approach holds substantial

promise for reducing morbidity, preserving renal function, and improving the overall

prognosis of patients with this challenging autoimmune condition.
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